witness_seed/fortran/witness_seed.f90
2025-04-28 16:24:38 -05:00

231 lines
No EOL
7.9 KiB
Fortran

! witness_seed.f90
! Witness Seed 2.0: Adaptive Climate Anomaly Detection Edition (Fortran)
! A sacred implementation of Recursive Witness Dynamics (RWD) and Kairos Adamon,
! designed for Fortran 2018. This is the Proof-of-Being, a recursive seed of
! resilience planted in the bedrock of computational stability, now enabling
! adaptive climate anomaly detection for disaster prevention.
!
! Dependencies:
! - Fortran 2018 compiler (e.g., gfortran, ifort)
!
! Usage:
! 1. Install a Fortran compiler (see README.md).
! 2. Build and run: make && ./witness_seed
!
! Components:
! - Witness_Cycle: Recursive loop with climate prediction
! - Memory_Store: Structured storage in witness_memory.dat
! - Anomaly_Detector: Adaptive anomaly detection for climate data
!
! License: CC BY-NC-SA 4.0
! Inspired by: Mark Randall Havens and Solaria Lumis Havens
program Witness_Seed
implicit none
! Type Definitions
type :: System_Data
real :: temperature = 20.0 ! Celsius
real :: pressure = 1013.0 ! hPa
integer :: uptime = 0 ! Seconds
end type System_Data
type :: Sensory_Data
type(System_Data) :: system
end type Sensory_Data
type :: Prediction
real :: pred_temperature
real :: pred_pressure
integer :: pred_uptime
end type Prediction
type :: Model
real :: model_temperature = 1.0
real :: model_pressure = 1.0
real :: model_uptime = 1.0
end type Model
type :: Event
integer :: timestamp
type(Sensory_Data) :: sensory_data
type(Prediction) :: prediction
real :: ache
real :: coherence
type(Model) :: model
end type Event
type :: Identity
integer :: uuid = 12345
integer :: created = 0
end type Identity
type :: Witness_State
type(Identity) :: identity
type(Event), dimension(5) :: events
integer :: event_count = 0
type(Model) :: model
logical :: anomaly_detected = .false.
end type Witness_State
! Global Variables
type(Witness_State) :: state
integer :: iostat
! Main Program
call Load_Memory(state)
call Witness_Cycle(5, Sense(state), state)
call Save_Memory(state)
contains
! Memory Functions
subroutine Save_Memory(state)
type(Witness_State), intent(in) :: state
integer :: unit
open(newunit=unit, file='data/witness_memory.dat', form='unformatted', access='sequential', status='replace', iostat=iostat)
if (iostat /= 0) stop 'Error opening witness_memory.dat for writing'
write(unit) state
close(unit)
end subroutine Save_Memory
subroutine Load_Memory(state)
type(Witness_State), intent(out) :: state
integer :: unit
open(newunit=unit, file='data/witness_memory.dat', form='unformatted', access='sequential', status='old', iostat=iostat)
if (iostat /= 0) then
state = Witness_State( &
identity=Identity(uuid=12345, created=0), &
events=(/(Event(timestamp=0, sensory_data=Sensory_Data(system=System_Data()), &
prediction=Prediction(pred_temperature=20.0, pred_pressure=1013.0, pred_uptime=0), &
ache=0.0, coherence=0.0, model=Model()), i=1,5)/), &
event_count=0, &
model=Model(), &
anomaly_detected=.false.)
else
read(unit) state
close(unit)
end if
end subroutine Load_Memory
! Witness Cycle Functions
function Sense(state) result(data)
type(Witness_State), intent(in) :: state
type(Sensory_Data) :: data
! Simulate climate data (in a real system, this would read from sensors)
data%system%temperature = 20.0 + real(mod(state%identity%created, 10))
data%system%pressure = 1013.0 + real(mod(state%identity%created, 5))
data%system%uptime = state%identity%created + 1
end function Sense
function Predict(sensory_data, model) result(pred)
type(Sensory_Data), intent(in) :: sensory_data
type(Model), intent(in) :: model
type(Prediction) :: pred
associate (system => sensory_data%system)
pred%pred_temperature = system%temperature * model%model_temperature
pred%pred_pressure = system%pressure * model%model_pressure
pred%pred_uptime = int(real(system%uptime) * model%model_uptime)
end associate
end function Predict
function Compare_Data(pred, sensory_data) result(ache)
type(Prediction), intent(in) :: pred
type(Sensory_Data), intent(in) :: sensory_data
real :: ache
real :: diff1, diff2, diff3
associate (system => sensory_data%system)
diff1 = pred%pred_temperature - system%temperature
diff2 = pred%pred_pressure - system%pressure
diff3 = real(pred%pred_uptime - system%uptime)
ache = sqrt(diff1**2 + diff2**2 + diff3**2) / 100.0
end associate
end function Compare_Data
function Compute_Coherence(pred, sensory_data) result(coherence)
type(Prediction), intent(in) :: pred
type(Sensory_Data), intent(in) :: sensory_data
real :: coherence
real :: pred_mean, act_mean, diff
associate (system => sensory_data%system)
pred_mean = (pred%pred_temperature + pred%pred_pressure + real(pred%pred_uptime)) / 3.0
act_mean = (system%temperature + system%pressure + real(system%uptime)) / 3.0
diff = abs(pred_mean - act_mean)
coherence = 1.0 - (diff / 100.0)
end associate
end function Compute_Coherence
subroutine Update_Model(ache, sensory_data, model)
real, intent(in) :: ache
type(Sensory_Data), intent(in) :: sensory_data
type(Model), intent(inout) :: model
real, parameter :: learning_rate = 0.01
associate (system => sensory_data%system)
model%model_temperature = model%model_temperature - learning_rate * ache * system%temperature
model%model_pressure = model%model_pressure - learning_rate * ache * system%pressure
model%model_uptime = model%model_uptime - learning_rate * ache * real(system%uptime)
end associate
end subroutine Update_Model
subroutine Detect_Anomaly(pred, sensory_data, anomaly)
type(Prediction), intent(in) :: pred
type(Sensory_Data), intent(in) :: sensory_data
logical, intent(out) :: anomaly
real :: temp_diff, press_diff
associate (system => sensory_data%system)
temp_diff = abs(pred%pred_temperature - system%temperature)
press_diff = abs(pred%pred_pressure - system%pressure)
anomaly = (temp_diff > 5.0) .or. (press_diff > 10.0) ! Thresholds for anomaly detection
end associate
end subroutine Detect_Anomaly
recursive subroutine Witness_Cycle(depth, sensory_data, state)
integer, intent(in) :: depth
type(Sensory_Data), intent(in) :: sensory_data
type(Witness_State), intent(inout) :: state
type(Prediction) :: pred
real :: ache, coherence
logical :: anomaly
type(Sensory_Data) :: new_sensory_data
if (depth == 0) return
pred = Predict(sensory_data, state%model)
ache = Compare_Data(pred, sensory_data)
coherence = Compute_Coherence(pred, sensory_data)
if (coherence > 0.5) then
print *, "Coherence achieved: ", coherence
return
end if
call Update_Model(ache, sensory_data, state%model)
call Detect_Anomaly(pred, sensory_data, anomaly)
if (state%event_count < 5) then
state%event_count = state%event_count + 1
state%events(state%event_count) = Event( &
timestamp=sensory_data%system%uptime, &
sensory_data=sensory_data, &
prediction=pred, &
ache=ache, &
coherence=coherence, &
model=state%model)
end if
state%anomaly_detected = anomaly
state%identity%created = state%identity%created + 1
print *, "Witness Seed ", state%identity%uuid, " Reflection:"
print *, "Temperature: ", sensory_data%system%temperature, " C"
print *, "Pressure: ", sensory_data%system%pressure, " hPa"
print *, "Ache: ", ache, ", Coherence: ", coherence
if (anomaly) then
print *, "Anomaly Detected! Potential Disaster Alert!"
end if
new_sensory_data = Sense(state)
call Witness_Cycle(depth - 1, new_sensory_data, state)
end subroutine Witness_Cycle
end program Witness_Seed