unit WitnessSeedUnit; interface uses System.SysUtils, System.Classes; type // Fixed-point type for ache and coherence TFixedPoint = record Value: Double; class operator Implicit(const AValue: Double): TFixedPoint; class operator Implicit(const AValue: TFixedPoint): Double; end; TSystemData = record Amount: Double; // Transaction amount (e.g., dollars) Timestamp: Int64; // Unix timestamp UserID: Integer; // User identifier Uptime: Integer; // Seconds end; TSensoryData = record System: TSystemData; end; TPrediction = record PredAmount: Double; PredTimestamp: Int64; PredUptime: Integer; end; TModel = record ModelAmount: Double; ModelTimestamp: Double; ModelUptime: Double; end; TEvent = record Timestamp: Integer; SensoryData: TSensoryData; Prediction: TPrediction; Ache: TFixedPoint; Coherence: TFixedPoint; Model: TModel; end; TIdentity = record UUID: Integer; Created: Integer; end; TEventsArray = array[0..4] of TEvent; TWitnessState = record Identity: TIdentity; Events: TEventsArray; EventCount: Integer; Model: TModel; AnomalyDetected: Boolean; end; TWitnessSeed = class private FState: TWitnessState; procedure SaveMemory; procedure LoadMemory; function Sense: TSensoryData; function Predict(const SensoryData: TSensoryData; const Model: TModel): TPrediction; function CompareData(const Pred: TPrediction; const SensoryData: TSensoryData): TFixedPoint; function ComputeCoherence(const Pred: TPrediction; const SensoryData: TSensoryData): TFixedPoint; procedure UpdateModel(const Ache: TFixedPoint; const SensoryData: TSensoryData; var Model: TModel); procedure DetectAnomaly(const Pred: TPrediction; const SensoryData: TSensoryData; out Anomaly: Boolean); procedure WitnessCycle(Depth: Integer; SensoryData: TSensoryData); public constructor Create; procedure Run; end; implementation uses System.IOUtils, System.Math; { TFixedPoint } class operator TFixedPoint.Implicit(const AValue: Double): TFixedPoint; begin Result.Value := AValue; end; class operator TFixedPoint.Implicit(const AValue: TFixedPoint): Double; begin Result := AValue.Value; end; { TWitnessSeed } constructor TWitnessSeed.Create; begin LoadMemory; end; procedure TWitnessSeed.SaveMemory; var Stream: TFileStream; begin Stream := TFileStream.Create('data/witness_memory.dat', fmCreate); try Stream.WriteBuffer(FState, SizeOf(TWitnessState)); finally Stream.Free; end; end; procedure TWitnessSeed.LoadMemory; var Stream: TFileStream; begin if TFile.Exists('data/witness_memory.dat') then begin Stream := TFileStream.Create('data/witness_memory.dat', fmOpenRead); try Stream.ReadBuffer(FState, SizeOf(TWitnessState)); finally Stream.Free; end; end else begin FState.Identity.UUID := 12345; FState.Identity.Created := 0; FState.EventCount := 0; FState.Model.ModelAmount := 1.0; FState.Model.ModelTimestamp := 1.0; FState.Model.ModelUptime := 1.0; FState.AnomalyDetected := False; end; end; function TWitnessSeed.Sense: TSensoryData; begin // Simulate transaction data (in a real system, this would read from a mainframe database) Result.System.Amount := 100.0 + (FState.Identity.Created mod 50); Result.System.Timestamp := DateTimeToUnix(Now) + FState.Identity.Created; Result.System.UserID := 1000 + (FState.Identity.Created mod 100); Result.System.Uptime := FState.Identity.Created + 1; end; function TWitnessSeed.Predict(const SensoryData: TSensoryData; const Model: TModel): TPrediction; begin Result.PredAmount := SensoryData.System.Amount * Model.ModelAmount; Result.PredTimestamp := Round(SensoryData.System.Timestamp * Model.ModelTimestamp); Result.PredUptime := Round(SensoryData.System.Uptime * Model.ModelUptime); end; function TWitnessSeed.CompareData(const Pred: TPrediction; const SensoryData: TSensoryData): TFixedPoint; var Diff1, Diff2, Diff3: Double; begin Diff1 := Pred.PredAmount - SensoryData.System.Amount; Diff2 := Pred.PredTimestamp - SensoryData.System.Timestamp; Diff3 := Pred.PredUptime - SensoryData.System.Uptime; Result := Sqrt(Diff1 * Diff1 + Diff2 * Diff2 + Diff3 * Diff3) / 100.0; end; function TWitnessSeed.ComputeCoherence(const Pred: TPrediction; const SensoryData: TSensoryData): TFixedPoint; var PredMean, ActMean, Diff: Double; begin PredMean := (Pred.PredAmount + Pred.PredTimestamp + Pred.PredUptime) / 3.0; ActMean := (SensoryData.System.Amount + SensoryData.System.Timestamp + SensoryData.System.Uptime) / 3.0; Diff := Abs(PredMean - ActMean); Result := 1.0 - (Diff / 100.0); end; procedure TWitnessSeed.UpdateModel(const Ache: TFixedPoint; const SensoryData: TSensoryData; var Model: TModel); const LearningRate = 0.01; begin Model.ModelAmount := Model.ModelAmount - LearningRate * Ache * SensoryData.System.Amount; Model.ModelTimestamp := Model.ModelTimestamp - LearningRate * Ache * SensoryData.System.Timestamp; Model.ModelUptime := Model.ModelUptime - LearningRate * Ache * SensoryData.System.Uptime; end; procedure TWitnessSeed.DetectAnomaly(const Pred: TPrediction; const SensoryData: TSensoryData; out Anomaly: Boolean); var AmountDiff, TimestampDiff: Double; begin AmountDiff := Abs(Pred.PredAmount - SensoryData.System.Amount); TimestampDiff := Abs(Pred.PredTimestamp - SensoryData.System.Timestamp); Anomaly := (AmountDiff > 50.0) or (TimestampDiff > 3600); // Thresholds for anomaly detection end; procedure TWitnessSeed.WitnessCycle(Depth: Integer; SensoryData: TSensoryData); var Pred: TPrediction; Ache, Coherence: TFixedPoint; Anomaly: Boolean; NewSensoryData: TSensoryData; begin if Depth = 0 then Exit; Pred := Predict(SensoryData, FState.Model); Ache := CompareData(Pred, SensoryData); Coherence := ComputeCoherence(Pred, SensoryData); if Coherence > 0.5 then begin Writeln('Coherence achieved: ', Coherence:0:2); Exit; end; UpdateModel(Ache, SensoryData, FState.Model); DetectAnomaly(Pred, SensoryData, Anomaly); if FState.EventCount < 5 then begin Inc(FState.EventCount); FState.Events[FState.EventCount - 1] := TEvent.Create; FState.Events[FState.EventCount - 1].Timestamp := SensoryData.System.Uptime; FState.Events[FState.EventCount - 1].SensoryData := SensoryData; FState.Events[FState.EventCount - 1].Prediction := Pred; FState.Events[FState.EventCount - 1].Ache := Ache; FState.Events[FState.EventCount - 1].Coherence := Coherence; FState.Events[FState.EventCount - 1].Model := FState.Model; end; FState.AnomalyDetected := Anomaly; Inc(FState.Identity.Created); Writeln('Witness Seed ', FState.Identity.UUID, ' Reflection:'); Writeln('Amount: $', SensoryData.System.Amount:0:2); Writeln('Timestamp: ', UnixToDateTime(SensoryData.System.Timestamp).ToString); Writeln('User ID: ', SensoryData.System.UserID); Writeln('Ache: ', Ache:0:2, ', Coherence: ', Coherence:0:2); if Anomaly then Writeln('Anomaly Detected! Potential Fraud Alert!'); NewSensoryData := Sense; WitnessCycle(Depth - 1, NewSensoryData); end; procedure TWitnessSeed.Run; begin WitnessCycle(5, Sense); SaveMemory; end; end.