Post-Local sync at 2025-06-23T22:46:07Z
This commit is contained in:
parent
9d33b42020
commit
9f97801b0d
1387 changed files with 250216 additions and 117 deletions
122
.venv/lib/python3.12/site-packages/tqdm/keras.py
Normal file
122
.venv/lib/python3.12/site-packages/tqdm/keras.py
Normal file
|
@ -0,0 +1,122 @@
|
|||
from copy import copy
|
||||
from functools import partial
|
||||
|
||||
from .auto import tqdm as tqdm_auto
|
||||
|
||||
try:
|
||||
import keras
|
||||
except (ImportError, AttributeError) as e:
|
||||
try:
|
||||
from tensorflow import keras
|
||||
except ImportError:
|
||||
raise e
|
||||
__author__ = {"github.com/": ["casperdcl"]}
|
||||
__all__ = ['TqdmCallback']
|
||||
|
||||
|
||||
class TqdmCallback(keras.callbacks.Callback):
|
||||
"""Keras callback for epoch and batch progress."""
|
||||
@staticmethod
|
||||
def bar2callback(bar, pop=None, delta=(lambda logs: 1)):
|
||||
def callback(_, logs=None):
|
||||
n = delta(logs)
|
||||
if logs:
|
||||
if pop:
|
||||
logs = copy(logs)
|
||||
[logs.pop(i, 0) for i in pop]
|
||||
bar.set_postfix(logs, refresh=False)
|
||||
bar.update(n)
|
||||
|
||||
return callback
|
||||
|
||||
def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1,
|
||||
tqdm_class=tqdm_auto, **tqdm_kwargs):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
epochs : int, optional
|
||||
data_size : int, optional
|
||||
Number of training pairs.
|
||||
batch_size : int, optional
|
||||
Number of training pairs per batch.
|
||||
verbose : int
|
||||
0: epoch, 1: batch (transient), 2: batch. [default: 1].
|
||||
Will be set to `0` unless both `data_size` and `batch_size`
|
||||
are given.
|
||||
tqdm_class : optional
|
||||
`tqdm` class to use for bars [default: `tqdm.auto.tqdm`].
|
||||
tqdm_kwargs : optional
|
||||
Any other arguments used for all bars.
|
||||
"""
|
||||
if tqdm_kwargs:
|
||||
tqdm_class = partial(tqdm_class, **tqdm_kwargs)
|
||||
self.tqdm_class = tqdm_class
|
||||
self.epoch_bar = tqdm_class(total=epochs, unit='epoch')
|
||||
self.on_epoch_end = self.bar2callback(self.epoch_bar)
|
||||
if data_size and batch_size:
|
||||
self.batches = batches = (data_size + batch_size - 1) // batch_size
|
||||
else:
|
||||
self.batches = batches = None
|
||||
self.verbose = verbose
|
||||
if verbose == 1:
|
||||
self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False)
|
||||
self.on_batch_end = self.bar2callback(
|
||||
self.batch_bar, pop=['batch', 'size'],
|
||||
delta=lambda logs: logs.get('size', 1))
|
||||
|
||||
def on_train_begin(self, *_, **__):
|
||||
params = self.params.get
|
||||
auto_total = params('epochs', params('nb_epoch', None))
|
||||
if auto_total is not None and auto_total != self.epoch_bar.total:
|
||||
self.epoch_bar.reset(total=auto_total)
|
||||
|
||||
def on_epoch_begin(self, epoch, *_, **__):
|
||||
if self.epoch_bar.n < epoch:
|
||||
ebar = self.epoch_bar
|
||||
ebar.n = ebar.last_print_n = ebar.initial = epoch
|
||||
if self.verbose:
|
||||
params = self.params.get
|
||||
total = params('samples', params(
|
||||
'nb_sample', params('steps', None))) or self.batches
|
||||
if self.verbose == 2:
|
||||
if hasattr(self, 'batch_bar'):
|
||||
self.batch_bar.close()
|
||||
self.batch_bar = self.tqdm_class(
|
||||
total=total, unit='batch', leave=True,
|
||||
unit_scale=1 / (params('batch_size', 1) or 1))
|
||||
self.on_batch_end = self.bar2callback(
|
||||
self.batch_bar, pop=['batch', 'size'],
|
||||
delta=lambda logs: logs.get('size', 1))
|
||||
elif self.verbose == 1:
|
||||
self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1)
|
||||
self.batch_bar.reset(total=total)
|
||||
else:
|
||||
raise KeyError('Unknown verbosity')
|
||||
|
||||
def on_train_end(self, *_, **__):
|
||||
if hasattr(self, 'batch_bar'):
|
||||
self.batch_bar.close()
|
||||
self.epoch_bar.close()
|
||||
|
||||
def display(self):
|
||||
"""Displays in the current cell in Notebooks."""
|
||||
container = getattr(self.epoch_bar, 'container', None)
|
||||
if container is None:
|
||||
return
|
||||
from .notebook import display
|
||||
display(container)
|
||||
batch_bar = getattr(self, 'batch_bar', None)
|
||||
if batch_bar is not None:
|
||||
display(batch_bar.container)
|
||||
|
||||
@staticmethod
|
||||
def _implements_train_batch_hooks():
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def _implements_test_batch_hooks():
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def _implements_predict_batch_hooks():
|
||||
return True
|
Loading…
Add table
Add a link
Reference in a new issue